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ABSTRACT

In this paper, we discuss how a combination of direct
finite-difference time domain solutions of Maxwell’s equations
and Monte-Carlo models of photocarrier transport can be used
to eliminate assumptions commonly made in developing
equivalent circuit models for transmission lines. We then
apply this technique to an electro-optic switch with sub-
picosecond risetimes.

INTRODUCTION

To accurately simulate semiconductor devices in the
sub-millimeter and upper millimeter wave range, high
frequency effects must be included. These effects must be
considered when developing switching, small-signal, and
large signal models. In large signal and switching problems,
there may be large AC fields whose effect upon carrier
transport must be considered. This may be accomplished by
using the electromagnetic fields obtained by solving Maxwell’s
equations.

Maxwell’s equations however, do not provide a
complete mathematical description of the problem. Instead,
they must be supplemented by a set of constitutive relations.
The problem considered here involves modeling the interaction
between electromagnetic waves and free carriers. The carriers
appear in Maxwell’s equations as sources of electromagnetic
fields, and eleciromagnetic fields appear in the constitutive
carrier transport model as forcing functions. A model of the
interaction between these two systems can be accurate for high
frequencies only if the models of both systems are accurate for
subpicosecond time intervals.

We have developed a technique to solve this problem
which merges a three dimensional Ensemble Monte-Carlo
(EMC) program with a three dimensional solution of
Maxwell’s equations in the time domain. The time domain
was chosen over the frequency domain since the photocarrier
transport process is highly nonlinear. Fortunately, we are
only interested in time periods on the order of a few
picoseconds, thus a direct time-domain solution of Maxwell’s
equations in conjunction with a Monte-Carlo transport model
15 possible.

The solution was developed by using a finite difference
scheme over a three dimensional mesh covering the entire

device. This scheme allows us to obtain the electromagnetic
wave propagation and temporal evolution of the electron and
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hole distributions throughout the device at every timepoint of
the simulation. We have applied this technique in a study of
the response of an electro-optic switch consisting of a gap in a
microstrip fabricated on semi-insulating GaAs with a LiTaO3
superstrate.

THEORY

In the past, photoconductive switches have been
modeled as switches inseried between two ideal, lossless
transmission lines. While more complicated models have
incorporated transmission lines with frequency dependent
characteristic impedances, these models are not suited for the
present case, Instead, direct solutions of Maxwell’s equations
are needed for a more general and exact approach. The
solution can be outlined in three steps:

Three-Dim
ion_of Maxwell’

. lectromagn
Finite-Differen 1
in_the Time Domain

Since this technique is developed to study transient
conditions inside semiconductors, it must be approached as an
initial value problem. An initial, self-consistent distribution of
the fields and charges must be specified. If the device is not
biased and contains no free charges, it may be assumed that
the initial fields are zero. However, when the device is biased,
one should initially solve for the DC charges and currents
which are the sources of the electric and magnetic fields. The
fields may then be obtained from their sources by using a
suitable set of equations.

The time domain finite-difference scheme then
proceeds to solve the problem in a leapfrog manner. This.
means that the electric field components are calculated at time t,
followed by the calculation of the magnetic field components at
time t+At/2. This process is possible since the electric field
space and time mesh have been displaced by a half mesh from
the magnetic field space and time mesh. This leapfrog solution
is continued until the simulation is complete [1].

In real space, these equations must be solved according
to appropriate boundary conditions. This means that the
tangential electric and magnetic fields must be specified on the
device’s boundaries. In most cases, the device is surrounded
by either metallic surfaces, or open space (i.e. air). The
metallic conductors are approximated as perfect conductors,
leading to zero tangential electric fields and perpendicular
magnetic fields. For open space boundaries, it is not possible
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to discretize all space due to computers’ limited memory.
Therefore, one must simulate open space through the use of
absorbing boundary conditions. Absorbing boundary
conditions allow outgoing waves to pass through boundaries
without reflection. To simulate this one must truncate the finite
difference mesh with a plane containing the tangential electric
fields and perpendicular magnetic fields. The absorbing
boundary condition formulas are then applied to the tangential
electric field components. Once the tangential electric field
components are known, the perpendicular magnetic field
components can be calculated through the use of the normal
finite difference equations [2].

II. The semiconductor model : Ensemble Monte-
Carlo Technique

In an EMC simulation, one keeps track of several
thousand representative particles by following their trajectories
through the system. The particles accelerated by fields, and
various individual scattering mechanisms are statistically
simulated in order to model energy flow.

EMC is capable of accurately simulating carrier
transport in semiconductors on a femto-second scale. In our
simulation we use a bipolar EMC based on a three valley
electron and a three band hole model for the GaAs substrate
with all relevant carrier-phonon and carrier-carrier scattering
mechanisms included. The electrodynamic forces influencing
the bipolar plasma are considered through a complete model of
Lorentz forces, which includes the time evolving electric and
magnetic fields. These fields depend upon the local charge
imbalance, and are self-consistently calculated in each time
step by the the electromagnetic model [3-4].

II1. Coupling the two models

EMC models the response of individual particles to
external driving forces. On the other hand, the electromagnetic
fields obtained from Maxwell’s equations are based on a fluid
model. This means that the current generated by individual
particles is not observed; only global results are obtained.
Thus the link between the two models must be established by
properly transforming the physical parameters (e.g. electric
field, magnetic field, current density) from one model to the
other. This is accomplished by dividing the semiconductor’s
volume of interest into cubic cells of uniform electric and
magnetic fields. These fields are obtained by properly
averaging the fields calculated by the electromagnetic model to
account for the differences in spatial and temporal mesh
definitions. EMC is used inside each cell to calculate carrier
velocity and position, and also to trace the carriers crossing the
borders of each cell. It is this current density that represents
the feedback from the EMC model for updating the
electromagnetic fields. Mathematically, it is obtained by adding
the contribution of the individual carriers:
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Fig. 1 The flow-chart.

The flow chart outlining the steps used in coupling the
two models can be seen in Fig. 1.

RESULTS

This technique was used to simulate the
photoconductive switch, shown in Fig. 2. This structure
represents one of the fastest switches available, with rise times
in the subpicosecond range.

The actual device is made up of coupled microstrip
lines on semi-insulating GaAs substrate. A thin plate of
LiTaO3, with a high reflectivity coating on its lower surface, is
placed on the device. A small window is etched into the
coating to allow for ransmission of the excitation beam onto
the photoconductive gap. Fringing fields from the substrate
extend into the electro-optic superstrate, and are detected and
measured as a change in the polarization of the probe beam
[31.
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where S:€ and V1€ are the super charges and velocities
associated with the holes and electrons within the (i,j,k)th cell,

N€ and NP are the number of holes and electrons in the
(i,j.k)th cell, and Ax, Ay, and Az represent the mesh spacings
in the three directions. This three dimensional current density,
which is effectively located at the center of the cell, is again
converted through proper transforms in order to suitably
interact with the electromagnetic fields [4-5] ¢
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In our simulation, the thickness of the dielectric
material, Dx, is 4.5um. The width of each strip, Ws, is 2um
and the separation between them, Wg, is 4um. One of the
strips is grounded at both ends, while the other has a gap, Lg,
of 5pm with one end grounded and the other end connected to
an 8§ volt DC source. The overall structure has dimensions Lx
= 7um, Ly = 14um, and Lz = 120um. The entire space is
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Fig., 2 Dimensions of device under simulation,

discretized using a three dimensional mesh with a uniform grid
spacing of 0.5um. A laser pulse of energy 1.55e¢V and 30fs
(FWHM) duration is a%plied to the gap, generating a carrier
concentration of 3X1016 cm™3.

The electron velocity obtained from our first simulation
is shown in Fig. 3. This simulation has the finite difference
mesh bounded by electric walls, which has the effect of
inclosing the entire structure in a metal box. In the electron
velocity plot we see very little velocity overshoot. This is
because the fields from the gap propagate away and strike the
metal boundary. In doing so, they experience a 180° phase
shift and propagate back into the gap and degrade the field,
thereby giving the impression that the field in the gap is
smaller than it actually is. Next, absorbing boundary
conditions are added. The electron velocity obtained from this
simulation is shown in Fig. 4. This simulation exhibited an
increase in the velocity. Again this can be explained by the
removal of the reflected fields that degraded the fields in the
gap. Finally, Fig. 5 shows the results from a simulation that
included absorbing boundary conditions and an electro-optic
superstrait. As can be seen, the velocity overshoot has
increased. This can be explained by considering reflections at
the GaAs/LiTaO3 interface. Now that the crystal has been
added electromagnetic energy flows into the superstrait,
increasing the field in the gap. The results presented in this
figure are very similar to the experimental ones [3].

Now we look at several plots of the electric field just
below the GaAs/LiTaO3 interface. Shown in Fig.'s 6 and 7
are the DC x and z components of the electric field. Next,
Fig.'s 8 and 9 show the AC x and z components of the electric
field at t = 1 ps. The AC plots were obtained by subtracting the
proper DC field from the total field at 1 picosecond. These
plots show that the electric field in the gap is non-uniform.
This can be understood by realizing that the applied electric
field pushes the electrons and holes in opposite directions,
thus forming a quasi-dipole. This quasi-dipole increases the
electric field near the electrodes, and reduces it in the center
[4].
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Fig. 3 Electron velocity from simulation in which the entire material
was enclosed in a metal box.
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Fig. 4 Electron velocity after absorbing boundary conditions

were added to the simulation.
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Fig. 5 Electron velocity from a simulation which included absorbing boundary

conditions and an electro-optic superstrait,
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Fig. 6 Z component of the DC electric field below the GaAs/LiTaO3

nterface.

Fig 7 X component of the DC electric field below the GaAs/LiTa03
interface.

CONCLUSION

We presented an accurate model for studying transients
in semiconductor devices and optical switches. This approach
couples a direct solution of Maxwell's Equations with an
Ensemble Monte-Carlo model. This model is capable of
simulating very high frequency devices and switches on the
subpicosecond scale. Optical interaction with semiconductor
devices can also be modeled.
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